SET THEORY-2							
1	Three sets A , B and K are such that $A \subset K$, B . Draw a Venn diagram to show this information	$B \subset K$ and on.	d $A \cap B = \emptyset$.				
MS-1	AOO _B ^K	2	B1 for A,B disjoint B1 for A,B subsets of K				
2		& A	[1]				
	(b) Shade the region $(A \cup B)'$.	E A	$\begin{bmatrix} B \\ \end{bmatrix}$				
	(c) Shade the complement of set <i>B</i> .	& A	$ \begin{array}{c} B \\ \hline \end{array} $ [1]				

MS-2	(a) (b) (c)	1 Intersection shaded 1 Ensure that the intersection is NOT shaded
3	A and B are sets. Write the following sets in their simplest form (a) $A \cap A'$.	m.
	(b) $A \cup A'$.	Answer(a) [1] Answer(b) [1]
	(c) $(A \cap B) \cup (A \cap B')$.	Answer(c) [1]
MS-3	(a) Ø (b) ξ (c) A	1 1 No brackets allowed. Not ε or e 1 No brackets allowed

The Venn diagram shows the number of elements in each set.

(a) Find $n(P' \cap Q)$.

Answer(a) [1]

(b) Complete the statement $n(\dots) = 17$.

[1]

MS-4

(a) 10 1

(b) $P \cup Q'$ oe 1

5

(a) $n(\mathscr{E}) = 10$, n(A) = 7, n(B) = 6, $n(A \cup B)' = 1$.

 \mathcal{E}

(i) Complete the Venn diagram by writing the number of elements in each subset.

[2]

(ii) An element of \mathscr{C} is chosen at random.

Find the probability that this element is an element of $A' \cap B$.

.....[1]

(b) On the Venn diagram below, shade the region $C' \cap D'$.

[1]

MS-5

(a) (i)

B1 for $n(A \cap B) = 4$

(ii)

 $\frac{2}{10}$ oe

1FT

allow correct answer or FT $\frac{their\ 2}{10}$

(b)

1

6	(a)	Q = {1, 2, 3, 4, 5, 6}			
		Write down a set P where $P \subset Q$.			
				<i>P</i> =	[1]
	(b)	Shade these regions in the Venn diagrams.			
		$M \cup N'$		$(A \cup B) \cap C'$	
	80	M	8	A	B
				C	
					[2]
					[~]
MS-6	(a)	Fewer than 6 elements from $\{1, 2, 3, 4, 5, 6\}$ or \varnothing			
	(b)	M	1		
		$A \longrightarrow B$	1		